
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2011-06-24

Rendering Realistic Cloud Effects for Computer
Generated Films
Cory A. Reimschussel
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Reimschussel, Cory A., "Rendering Realistic Cloud Effects for Computer Generated Films" (2011). All Theses and Dissertations. 2770.
https://scholarsarchive.byu.edu/etd/2770

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2770?utm_source=scholarsarchive.byu.edu%2Fetd%2F2770&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Rendering Realistic Cloud Effects for Computer Generated Production Films

Cory Reimschussel

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael Jones, Chair

Parris Egbert

Mark Clement

Department of Computer Science

Brigham Young University

August 2011

Copyright © 2011 Cory Reimschussel

All Rights Reserved

www.manaraa.com

ABSTRACT

Rendering Realistic Cloud Effects for Computer Generated Production Films

Cory Reimschussel

Department of Computer Science, BYU

Master of Science

This work addresses the problem of rendering clouds. The task of rendering clouds is important

to film and video game directors who want to use clouds to further the story or create a specific

atmosphere for the audience. While there has been significant progress in this area, other

solutions to this problem are inadequate because they focus on speed instead of accuracy, or

focus only on a few specific properties of rendered clouds while ignoring others. Another

common shortcoming with other methods is that they are not integrated into existing rendering

pipelines. We propose a solution to this problem based on creating a point cloud to represent the

cloud volume, then calculating light scattering events between the points. The key insight is

blending isotropic and anisotropic scattering events to mimic realistic light scattering of

anisotropic participating media. Rendered images are visually plausible representations of how

light interacts with clouds.

Keywords: clouds, rendering, Mie function, light scattering

www.manaraa.com

iii

Table of Contents

Table of Contents ... iii

List of Tables ... iv

List of Figures ... v

Chapter 1: Introduction ... 1

Contribution .. 3

Chapter 2: Related Work .. 7

Modeling ... 7

Animation ... 8

Rendering .. 9

Chapter 3: Methods ... 11

Features ... 11

Data Structures .. 12

Point Cloud ... 13

Scattering Function ... 14

Brickmap ... 15

Rendering Algorithm .. 15

Generating the point cloud .. 16

Simulating light scattering .. 17

Main Function ... 17

Worker Function ... 20

Final Rendering ... 23

Chapter 4: Results ... 25

Chapter 5: Analysis / Discussion .. 30

Future Work .. 32

References ... 34

Appendix: Implementation Details ... 36

www.manaraa.com

iv

List of Tables

Table 1 Data Variables.. 13
Table 2 C++ Executable Input and Output ... 43

Table 3 Shader createPointCloud Input and Output ... 44
Table 4 Shader readPointCloud Input and Output .. 45

www.manaraa.com

v

List of Figures

Figure 1 Clouds rendered using our method ... 1
Figure 2 Conceptual visualization of the Mie scattering function .. 5

Figure 3 Mie scattering function plots .. 15
Figure 4 Steps in our cloud renderer ... 16
Figure 5 Creation and initialization of two points in a cloud. .. 17
Figure 6 Mie to Isotropic Scattering ... 19
Figure 7 Accumulation of light scattered from three points to a nearby point. 23

Figure 8 The values of after the scattering passes have completed. .. 26
Figure 9 Renderings of the scattering process. ... 27
Figure 10 Clouds rendered with different lighting colors ... 28
Figure 11 Clouds rendered with different features ... 29
Figure 12 The different contributions to the bunny cloud rendered separately 31

Figure 13 Algorithm Setup ... 37
Figure 14 rmanSSRenderPass settings.. 40

Figure 15 rmanSSDiffusePass settings ... 41
Figure 16 rmanSSMakeBrickmapPass settings .. 41
Figure 17 readPointCloudSG settings ... 43

www.manaraa.com

1

Chapter 1: Introduction

Figure 1 Clouds rendered using our method

We address the problem of rending clouds. Clouds are difficult to render because they are

composed of water vapor droplets which scatter light as the light passes through the volume of

the cloud. The problem is even more difficult because water scatters light with different

intensities in different directions, also known as anisotropy—and in some cases this anisotropy

results in visually significant effects.

Film directors use cloud effects to tell stories. Clouds can be used to quickly set the scene in a

film or game. Directors use the ominous thunderhead, the glowing sunset or the lazy cumulous

www.manaraa.com

2

floating through the summer sky to evoke a feeling in the audience. For live action film, a

director might have to wait several days to shoot clouds in the right atmospheric conditions. CG

film directors have the advantage that the artist can create and completely control the clouds in a

scene or shot. The artist does not have to wait for the ideal weather conditions but does have to

create the clouds using a computer.

Simulating clouds in a computer is a complex task involving many facets. There are many

solutions to the different aspects of generating computer clouds, each one focusing on a different

piece of the solution and none offering a complete solution. The basic tasks include modeling,

animation, shading, lighting, and rendering. Each of these aspects must be considered when

creating cloud effects for CG films.

While existing rendering approaches, described later, provide good solutions to the problem they

address, these methods are inadequate in that they are not physically accurate, or are not easily

integrated into a production pipeline. Our work seeks to provide a method that resolves these

shortcomings.

Wavelength dependent global illumination algorithms for anisotropic participating media could

be used to render clouds (Max 2004). However, this is prohibitively expensive so specialized

methods have been developed to reproduce illumination effects for clouds but at a lower

computational cost. One of the more significant problems in rendering clouds is the choice of

phase function. The phase function describes how light is scattered as it passes through a

material. Clouds scatter light anisotropically, so it is important to use a phase function that

mimics this behavior. Some methods ignore the phase function altogether (Wang 2003) and

instead focus on cloud shape and transparency. Others chose to use the Rayleigh scattering

function (Harris 2001, Harris 2003) for its simplicity. However, while it is easier to compute and

www.manaraa.com

3

is accurate for smaller particles, like aerosols, the Rayleigh function is inaccurate for larger

particles like water droplets in clouds. Light scattering through water droplets can be calculated

using the Mie function but the Mie function is more complex to compute. Some works use a

simplified version of the Mie function, such as (Trembilski 2002), which focuses on the strong

forward scattering component. However, this omits features like the glory and fogbow.

The method described in (Bouthors 2008) does incorporate a pre-computed Mie function and is

able to reproduce realistic cloud features by matching cloud shapes to slabs and using the pre-

computed data for the slabs to approximate light scattering through the cloud shape. While this

method is more physically accurate than other methods, (Bouthors 2008) still suffers because it

is not easily integrated into an existing rendering pipeline as it was created specifically to run in

real-time on a GPU. (Bouthors 2008) can also be difficult to work with because it produces

multiple passes where each pass represents an order of scattering events. Each pass must be

individually adjusted and combined with the other passes before the final image is produced.

Contribution

We present a physically-based solution for rendering CG clouds which achieves many realistic

effects, including glory, fogbow and silver lining effects at a lower computational cost than true

global illumination for clouds. We rely on scattering events between a sparse set of points within

the cloud geometry to simulate global illumination effects. The key insight which drives this

work is that while individual scattering events between water droplets in a cloud are anisotropic

according to the Mie function, the sum of these anisotropic events is isotropic. In general, water

droplets that receive light from one direction will scatter that light anisotropically. But if a water

droplet receives light from many directions the net effect of light scattered from that droplet will

be isotropic. These insights lead to a new method that simulates global illumination in clouds.

www.manaraa.com

4

We track scattering events received at a point. If the point receives light from primarily one

direction then we calculate light scattered from that point anisotropically. However, if the point

receives light from many different directions then we calculate light scattered from that point

isotropically.

Figure 2 illustrates this process. In the upper left is an image of the anisotropic Mie scattering

function. In the image in the upper right the Mie scattering function has been modified by being

summed with another Mie scattering function, oriented differently. This process continues with

the addition of two more Mie scattering functions, all oriented differently, until the final image in

the lower right that appears very similar to an isotropic scattering function.

Thesis Statement

Blending isotropic and anisotropic phase functions in a point-to-point approximation of light

scattering within clouds results in believable images of clouds that can include the glory, fogbow

and silver lining.

www.manaraa.com

5

Figure 2 Conceptual visualization of the Mie scattering function

As scattering events are summed, the overall effect becomes more isotropic

Our method works by first taking a geometric volume and creating a collection of points inside

that volume. We then perform multiple passes through the point cloud to simulate light scattering

between points within the volume. We make use of the Mie function and the distance between

any two points to attenuate the light scattering between those two points. For each point in the

cloud, we also calculate a ratio of outgoing light scattered anisotropically, via the Mie function,

and light scattered isotropically. This ratio preserves anisotropic scattering where it may be

needed and gracefully switches to isotropic scattering in other places. The ratio allows the net

effect of multiple anisotropic scattering events in different directions from a single point to be

modeled using isotropic scattering. Our unique use of this ratio reduces rendering time while still

reproducing specific realistic cloud effects. Once the simulation has finished, ray marching,

along with the Mie function and the anisotropic/isotropic scattering ratio variable, creates a final

www.manaraa.com

6

image from the light scattered, calculated and stored in the point cloud. Our work has been

developed within the Maya/Renderman rendering pipeline. Our algorithm handles all standard

geometry that can be integrated into the Maya/Renderman pipeline.

Figure 1 demonstrates the visual plausibility of the resulting clouds. In the image on the lower

left, note the silver lining around the cloud which results from strong forward scattering on the

model edge. In the image on the lower right notice the strong contrast between the lit and unlit

sides of the cloud.

www.manaraa.com

7

Chapter 2: Related Work

Modeling

Modeling is the process of creating 2D or 3D geometry that represents the general shape and

position of the object in the computer simulated world. For modeling clouds, one of the easiest

and quickest solutions is to create the geometry by hand using conventional geometry

representations. Compared to geometry for characters or other more complicated objects, cloud

geometry is simple to construct, and can be made from basic shapes. Modeling the clouds by

hand using conventional geometry gives the artist more control over shape and position, but can

be harder to animate. Using 3D geometry with volumetric shaders can also increase render time.

In a production film it is important to find a compromise between output quality and render time.

Instead of trying to simulate the physics, most other approaches to rendering clouds focus on

quickly obtaining a reasonable image. While results-based rendering methods can produce

reasonable images, they often lack specific features that give added realism.

One of the most common techniques to render clouds is to use 2D billboards (Wang 2003). The

billboards are usually layered to simulate 3D effects. Clouds rendered as billboards are

significantly faster than full 3d clouds, but visual problems tend to increase as the distance from

the cloud decreases. Animating the cloud billboards can also pose problems, and calculating

effects like sub-surface scattering is difficult. This technique is commonly used to represent large

numbers of clouds rendered a long distance from the camera.

Clouds can also be represented using particle systems. While it is possible to render the cloud

particles as points, it is more common to render the particles as spheres/ellipsoids or metaballs

(blobby surfaces) (Elinas 2000). An advantage of this approach is that it is easier to simulate

www.manaraa.com

8

forces like wind or turbulence acting on the clouds. Representing clouds as a blobby surface

using metaballs may be a very useful approach because it combines the benefits of particle

simulation with the blobby surface. Since the blobby surface is rendered as a single piece of

geometry, this method lends itself to the advanced rendering techniques along with the relative

ease of particle simulation.

One particularly effective solution is to render particles as billboards, thus gaining the benefits of

both particle based methods and billboard rendering. The combined approach works well for

simulation and animation, but is not as useful for advanced rendering techniques like sub-surface

scattering. It is also harder to model specific cloud shapes and sizes using particles.

One final approach is to model clouds using fluid simulations or volumetric representations

(McGuire 2006). While this approach may be more accurate for animation and shading,

modeling clouds with this technique is implicitly more difficult. Defining cloud shapes and sizes

in a fluid simulation is much harder than creating and shaping a geometric mesh or even than

creating clusters of particles, in part due to the complexity of the simulation system. But even

disregarding complexity, fluid simulations can be undesirable because of the enormous

computational requirements.

Animation

Ease of use is one of the main considerations when deciding how to model clouds. Another key

consideration is what animation is needed for the clouds. If the director only needs the cloud to

float across the sky, then the artist could simply key-frame standard geometry. However, key

framing is difficult in some cases, particularly when multiple characters or objects interact.

Animation requirements must be taken into account when modeling clouds.

www.manaraa.com

9

The simplest and most standard animation method is key-framing. As noted above there are

situations when key-framing clouds can be sufficient. But in general clouds are too complex to

be simulated completely by key-framing. And while key-framing would work for regular

geometry, it does not work for particle or fluid simulations or other dynamic simulations.

Because clouds are difficult to animate manually using key-framing, simulation tends to be the

preferred method for representing clouds, and indeed much of the work on CG clouds is focused

on real-time simulation. Cloud simulation may be as simple as attaching dynamic forces to

particle systems, or may be as complex as full 3D fluid simulation. While it is harder to directly

control cloud shape, size and motion with simulation techniques, it is easier for the artist to focus

on general movements and effects without having to worry about all of the details. And in

general, simulations tend to produce the most realistic results.

Another interesting approach to cloud motion is to animate the cloud shader or texture. This

approach allows the artist to manipulate the intra-cloud motion and change small details within

the cloud without changing the general cloud shape. Animating the shader or texture is an

interesting solution because it mimics the natural behavior of clouds – clouds do not statically

float across the sky, but are ever changing and molding into different shapes. Of particular

interest is (Schpok 2003) which includes a texture animation method with interesting results.

Rendering

While working on modeling and animation or simulation, the artist must also keep in mind how

the cloud is to be shaded or textured. The most common approach to shading clouds is to use

fractal patterns (Wang 2003). Using fractals for surface and volumetric shading mimics the

wispy effect of natural clouds. Fractals are used almost exclusively for shading clouds, and the

www.manaraa.com

10

results are excellent as long as the scene calls for wispy clouds. In addition to the fractal textures,

other techniques add to the look and feel of CG clouds.

By their nature clouds exhibit strong scattering effects. It is possible to simulate many of these

scattering effects using techniques like multiple forward scattering, anisotropic scattering and

Mie scattering. Many researchers have tried to reproduce and simulate natural cloud scattering

effects. (Bouthors 2008) describes a particularly successful approach for approximating

scattering effects for CG clouds. While calculating scattering effects in general generates more

realistic and pleasing results, it is not always possible to implement such calculations. Ray traced

scattering can be computationally cost prohibitive. Also, it may be difficult to calculate sub-

surface scattering when the clouds are represented as a set of billboards instead of as a volume.

In situations where it is not possible to fully calculate scattering effects there are other techniques

that approximate light scattering without the complex computation. One such technique is to use

a deep shadow map. The map is computed from one or more light sources, but instead of

darkening areas normally in shadow, the map is set to illuminate areas that are not in direct light.

While not as precise as computing scattering effects, the deep shadow map technique can

produce plausible results. Deep shadow maps with particle systems and fractal shaders were used

in the BYU student film ―Kites‖ (Kites 2009).

www.manaraa.com

11

Chapter 3: Methods

Varying the ratio of light scattered isotropically and anisotropically, using a precomputed Mie

scattering function, together with a point cloud representation of the cloud volume and ray

marching algorithms results in a cloud rendering algorithm that produces visually plausible

global rendering effects. The next section highlights key features of this new rendering method.

The sections that follow describe the method in detail.

Features

Our method is unique because, while most other methods focus on either speed or physical

accuracy, our method focuses on both. Our method reproduces some of the specific features of

clouds most often ignored by other methods, such as fogbows, the glory and the silver lining,

while still making use of speedups, such as pre-computing and reusing data that reduce

computation time.

The key feature of this method is how it uses the Mie scattering function. The Mie function

describes how light scatters through water particles, and is very anisotropic. The Mie function is

what gives clouds some of their defining visual features like the silver lining effect, the glory and

the fogbow. However most other methods do not make use of the Mie scattering function

because it is very complex to compute. We use a pre-computed version of the function stored as

a texture map that gives us the additional effects of the Mie function without having to compute

it for individual scattering events.

The most physically accurate way to calculate scattering in clouds is to use path tracing with

Monte-Carlo integration. While accurate, path tracing so many scattering events is very

computationally time consuming. Instead of trying to calculate all of those scattering events, we

www.manaraa.com

12

simplify the process by assuming that the light scattering at any one point can be more or less

isotropic. Near the lit surface of the cloud we expect most of the scattering events to be very

anisotropic because most of the light is coming from one direction. In the interior of the cloud we

would expect that the combined effect of the individual Mie scattering events is isotropic

because light is scattering from all directions. We mimic this effect by using a ratio value that

controls how much light is scattered isotropically and anisotropically. This allows scattering

events at a point to become more isotropic as that point receives light from more directions.

Another of the most important features of our method is reuse. Once light scattering in a cloud

for a specific incoming light angle has been computed, the results can be reused for any view

angle without any re-computation. Another speedup is that this method can be very easily

parallelized – any one scattering event in a pass of the algorithm is independent of any other and

can be calculated in any order.

Data Structures

Scattering data is stored in three data structures: the point cloud, the scattering function and a

brickmap. A brickmap is a 3D data structure developed by Pixar to store data and is the

functional equivalent of the 2D texture map. The point cloud stores the intensity and direction of

both incident and exident light at points within the cloud volume. The scattering function is

stored as a texture map. The brickmap is created using the output point cloud and stores final

scattering data used in rendering. Each data structure is described in more detail in the following

sections.

www.manaraa.com

13

Point Cloud

The irradiance in a cloud created by light scattering in the cloud is stored as a point cloud. The

point cloud is essentially a set of data points with a position in space and a set of data for each

point. Table 1 lists the data that are stored in the point cloud. Details on how the point cloud is

created are given later.

Table 1 Data Variables

Variable Name Data

 Stores the coordinates of each point in world space

 A normalized vector that stores the prominent light direction

Used when calculating the Phase Angle for the Mie function

 Vector that stores the summed direction of the prominent light vector

for each point that contributes light to the current point

 Stores the input or initial light percentage at the point

At the end of each pass the calculated light contribution from other

points is added to this value

 During the algorithm stores the summed light contribution from other

points

In the end is used to store the final or output light percentage

 Density value (between 0.0 and 1.0) for that point

Note: Varying the density adds noise to the results

www.manaraa.com

14

 Value that stores the ratio (between 0.0 and 1.0) of Mie scattering to

isotropic scattering

Initially set to 1.0 (complete Mie scattering)

Scattering Function

The Mie function describes how light is scattered by water droplets in a cloud. Given an incident

and exidant light direction, the Mie function returns the intensity of the light scattered in the

exidant direction as a percentage of the intensity of the light coming in from the incident

direction. Mie scattering is both anisotropic and wavelength dependent. We used the Mie

function computed in (Bouthors 2008), stored in the form of three texture maps, one for red,

green and blue values. The texture maps were created by reading in the raw scattering data,

converting it to an image, then converting the image into a texture. Lookup in the Mie scattering

data is done by scaling and shifting the angle between incoming and outgoing light, also called

the phase angle, to correctly fit the bounds of the texture map.

The Mie scattering function is depicted in Figure 3. In the image on the left the horizontal axis

represents the difference between the incoming light angle and the scattering light angle, with the

left side of the graph being 0° (forward scattering) and the right side of the graph 180° (backward

scattering). The red, green, and blue lines represent the scattering values for the respective light

components. The image on the right is a polar plot of the same data, oriented so that the

incoming light angle is up.

The differences in scattered light intensity account for many of the lighting effects observed in

clouds. The strong forward lobe accounts for the semi-transparent appearance of clouds lit from

www.manaraa.com

15

behind. Small differences in intensity between the red, green and blue scattering functions result

in rainbow-like glory and fogbow effects.

Figure 3 Mie scattering function plots

Mie Scattering Function as Cartesian and polar plot. For the graph on the left the vertical axis represents

scattering intensity, while the horizontal axis represents the phase angle. The graph on the right is a polar

plot of the same data, with the incoming light angle as up.

Brickmap

Before the final rendering, the output point cloud, together with the simulated scattering data, are

converted to a brickmap. A brickmap is a Pixar-specific implementation of a 3D texture map.

The brickmap generally requires less storage space and leads to lower lookup times when

compared to point clouds.

Rendering Algorithm

The rendering algorithm is a three-step process. The first step is generating a point cloud that

will represent the cloud volume. The point cloud stores all of the intermediate and final data. The

second step is simulating how light scatters through the point cloud. The final step is to render

the results from the simulation pass. Figure 4 shows snapshots from this process for a cloud

shaped like a bunny. Each step is explained in more detail in the following sections.

www.manaraa.com

16

Figure 4 Steps in our cloud renderer

Three steps in rendering a cloud shaped like a bunny. First create the point cloud. Then simulate

light scattering through the point cloud. Finally render an image using the two point clouds

Generating the point cloud

The point cloud is generated using a standard ray-marching algorithm, adding points to the point

cloud at each step. For each point, a color representing the attenuated light , is calculated and

stored, along with a vector, representing the prominent light direction, a Mie to isotropic

scattering ratio , and a density value . Multiplying the density by a fractal pattern adds noise

to the cloud. The image on the left side of Figure 4 shows the resulting point cloud. Points are

colored with their initial value. At this point, only direct illumination from the light source is

recorded in the point cloud and only the back edge of the bunny is illuminated directly by the

light source. The other points remain dark until multiple scattering passes are computed.

Figure 5 depicts the creation of two points at different depths relative to the cloud surface and the

calculation of their initial color and prominent light direction. For each point, the initial light

contribution from the sun attenuated for distance, a prominent light direction, a Mie/isotropic

ratio and a density are stored. The point on the left is closer to the surface, so less of the light is

attenuated. The point on the right is farther from the surface so some of the light from the source

is attenuated before it reaches the point. The Mie distribution is oriented parallel to the incoming

light direction.

www.manaraa.com

17

Figure 5 Creation and initialization of two points in a cloud.

The point nearest the surface receives more light initially.

Simulating light scattering

Scattering of light is simulated using a main function and a worker function.

Main Function

After the point cloud and Mie data have been read in the main function enters a loop. Each loop

is one pass of the algorithm. For each pass, the main algorithm initializes a set of worker threads

then waits for the threads to complete the work. Once each thread has finished, the main function

will update the point cloud for the next pass by updating the ratio value for each point.

represents the ratio between purely Mie scattering (1.0) and purely isotropic scattering (0.0).

is updated using the vector , which represents the summed intensity and direction of

scattering events over one pass of the algorithm. is updated using the equation:

 Equation 1

The justification for this approach is that each point starts with a prominent light direction - all of

the light scattering through that point comes from the sun, and therefore one direction. But as the

www.manaraa.com

18

point receives scattering events from other points the light scattering through the point becomes

more isotropic - not that the individual scattering events are isotropic, but that since there are so

many Mie scattering events coming from all directions, the overall effect is isotropic. The same

simplification is made in other work (Haber 2005) involving Mie scattering in the atmosphere

although we smoothly vary from Mie to isotropic scattering rather than switching to isotropic

scattering after the first bounce as in (Habel 2005). If the point is receiving scattering events in

primarily one direction then the summed length of grows, and stays closer to 1.0

(anisotropic scattering). If however the point receives scattering events from all directions, the

scattering vectors summed in will cancel each other out, becomes shorter and will

move toward 0.0 (isotropic scattering).

Figure 6 represents this transformation, with the Mie function depicted in the upper left corner,

and the isotropic function depicted in the lower right. As approaches zero, the scattering

function transforms into the isotropic function shown in the lower right.

www.manaraa.com

19

Figure 6 Mie to Isotropic Scattering

After has been updated, is normalized and copied to . The light contribution stored in

 is added into , and is reset to zero.

After the main loop is finished the data is written out to an output point cloud. At this point each

component of the output color is thresholded to fall within the range 0 to 1.

Equation 2

www.manaraa.com

20

Worker Function

The main part of the scattering algorithm is O(n
2
) where is the number of points, and is

calculated using two nested loops. We limit the range of point-to-point scattering. This does not

improve the O() asymptotic bound but does reduce the number of scattering events that need

to be computed. One of the major speedups of this algorithm is to limit the scattering

calculations to and from a point to a local neighborhood of points. At the start of each interior

loop, the worker thread will first calculate the distance between the two points. If the distance is

greater than a threshold it skips any further calculations and moves on to the next iteration. This

speedup does not significantly affect the results because as the distance between two points

increases, the attenuation between the two points based on distance makes the light scattered

between the two points become negligible. This is similar to the use of a smoothing kernel with

limited support radius in smoothed particle hydrodynamics (Muller 2003). The worker will do

the same with the light attenuation value for the distance between the two points. If the

attenuation due to distance between the two points and is below a certain threshold

the scattering event is viewed as negligible and is ignored.

The attenuation due to distance is calculated using the distance between the two points, the

average of the densities of the two points, and the extinction coefficient as defined in

(Bouthors 2008). The extinction function includes extinction of light due to the water molecules

within the cloud volume. The extinction coefficient effectively scales the exponential

function, controlling how fast the light falls off due to distance.

 ⁄ Equation 3

After calculating the attenuation due to distance between the two points, we calculate the

attenuation due to Mie scattering . is calculated using the Mie function and the phase

www.manaraa.com

21

angle , or the angle between prominent light direction and the normalized vector from to

 (

). We use the phase angle thus obtained as a lookup to the Mie function to get .

Finally we calculate the light scattering event from to as follows:

 Equation 4

 Equation 5

where is the light scattered from to , and is calculated by attenuating the incoming

light by the ratio of isotropic and anisotropic light and the distance between the two points.

 is the summed prominent light direction of the destination point and is calculated

similarly to . At this point, calculate the opposite scattering event from to using

the same process. can be reused, but is recalculated.

Figure 7 illustrates the worker algorithm in three different arrangements of source scattering

points for a single target point. Each point has a prominent light direction shown as a black

vector, and a Mie/isotropic function shown as an oriented Mie scattering plot. The point

receiving light also includes a light blue vector that represents and which is updated after

each scattering event. In the first scattering event, (a), the target is located far away from and to

the side of the source. In this case, the source contributes little light to the source due to

attenuation and directional Mie scattering. In (b) the source and target are closer but the target

lies outside the region of strong forward scattering for the source. In this case, the source’s

contribution, represented by a small light blue vector, is added to the contribution from (a). The

source in (c) is close to the target and the target lies in the direction of strong forward scattering.

The contribution from this source is added to the contributions of the previous two.

www.manaraa.com

22

Similar scattering events are computed and included for other points near the target but not

shown in the figure. The final scattered light vectors are shown in (d). The direction of the sum is

the new prominent direction of the target. The length of the sum is used to set the scattering ratio

for the target. If the sum of the vectors is long, then the target receives light primarily from one

direction and Mie scattering is stronger than isotropic scattering at the target. If the sum of the

vectors is short, then the target may be receiving light from many directions and isotropic

scattering is stronger than Mie scattering at the target. The rationale for this decision is that

simultaneous Mie scattering in many directions is nearly isotropic. The process is repeated for

each set of points in the range. If the thread completes work for the given range, it will ask for a

new range until the whole pass has been completed. At this point the threads exit and control

returns to the main function. For the next pass the threads are respawned.

www.manaraa.com

23

(a)

(b)

(c)

(d)

Figure 7 Accumulation of light scattered from three points to a nearby point.

Final Rendering

After computing and storing light scattering within the cloud volume, the illumination data in the

point cloud is converted to a brickmap for final rendering. Final rendering is based on a ray

marching algorithm. The ray marcher steps through the volume of the geometry, sampling data

from the brickmap and the initial point cloud at each step. From the brickmap we sample the

output light value along with the prominent light vector , the density , and the Mie to

isotropic ratio . From the input point cloud we sample the initial light value , so that we do

not have to recalculate the attenuated light contribution from the sun.

Using this data we first compute attenuation due to Mie scattering using and the incident

vector ,

www.manaraa.com

24

Equation 6

and the attenuation due to distance using , the distance from the surface to the current point

 , and the extention coefficient .

 Equation 7

From these we calculate total luminance at the point using , , and a constant that scales

the isotropic scattering . This equation attenuates a light value by the Mie function and an

isotropic value as determined by the ratio , adding the initial contribution from the sun , and

attenuating the sum of the values by the distance from the surface in the incident direction. By

doing this we make sure to include contributions from the sunlight and from light scattered

through the cloud.

 Equation 8

The volume covered by each step is summed using trapezoidal integration. To this final result we

add an ambient term representing light scattered through the cloud from the sky. The final results

are written out to an image file.

www.manaraa.com

25

Chapter 4: Results

As is the practice in graphics papers on rendering in general, and on rendering clouds

specifically, we subjectively demonstrate the quality of our algorithm by including rendered

images. We also objectively demonstrate the quality of the algorithm by showing cloud-specific

effects like the glory, fogbow, strong contrast between the lit and unlit sides of the cloud and the

silver lining.

Although our algorithm is independent of the geometric model, we chose to use the Stanford

bunny geometry as our model. The thin ears and the thicker body allow us to test and view

different cloud features without switching between models. Although the original geometry is

modeled using many polygons, this did not significantly affect computation times because we

render from a point cloud. The algorithm was also used to render other geometry such as the

Utah teapot and a Maya particle system rendered as a blobby-surface. First we give some images

that illustrate the different components of the algorithm then we give images that demonstrate

cloud-specific rendering effects.

The unique and defining feature of this method is how it makes use of the Mie function. We used

a ratio value that would control how isotropic the scattering was at a point. Figure 8 shows a

screenshot of the bunny point cloud colored by . The darker values represent isotropic

scattering, while lighter values represent anisotropic scattering. In this view, the light is coming

from the right side to the left. As expected the lit side is darker – more isotropic – while the unlit

side is lighter – more anisotropic. This is because while the points on the lit side receive both

forward scattering and back scattering events, the points on the unlit side receive only forward

scattering events. The combination of forward and backward scattering events on the lit side

makes the overall effect more isotropic. The lighter (anisotropic) band around the middle of the

www.manaraa.com

26

bunny also fits expectations. The Mie function is strongly forward scattering with some back

scattering. The side scattering is very weak. Thus the points around the middle remain more

anisotropic because the only scattering events they receive are from the side and are significantly

weaker. Other variations are due to differences in the density – less dense particles make for

stronger scattering events.

Figure 8 The values of after the scattering passes have completed.

Darker values are more isotropic, while lighter values are more anisotropic. Notice the strong

anisotropic (Mie) scattering around the middle.

We can verify that the scattering process results in visually significant effects by viewing renders

based on point clouds that have been through varying numbers of passes of the scattering

algorithm. Figure 9 shows renderings of a single scene in which the number of scattering passes

increases. Increasing the number of scattering passes increases the distribution of light through

the cloud.

www.manaraa.com

27

Figure 9 Renderings of the scattering process.

The top left image was rendered using a point cloud before the scattering simulation had been

run. The bottom right image was created using a point cloud created after all of the scattering

passes had been computed. The middle images form the intermediate steps.

Figure 10 shows the bunny, teapot and blobby surface models rendered to mimic sunset and

night lighting. As long as the incoming light angle remained constant, the view angle and the

input light color could change without having to recompute scattering in the point cloud. The

teapot and blobby-surface point clouds were modified by moving the input points using a fractal

pattern, producing a softer look to the clouds.

Figure 11 (a) illustrates the glory effect generated using wavelength dependent anisotropic

scattering using the Mie function. The effect is due to strong Mie scattering at the lit surface of

the cloud and occurs when the view angle is oriented in the same direction as the incoming light.

Figure 11 (b) shows the silver lining effect, which is due to thinner and less dense areas of the

cloud. The bright ears in the image are an example of thinner areas, while the lighter spot in the

www.manaraa.com

28

lower right is due to a less dense volume of the cloud. Also interesting is Figure 11 (c) which

shows the strong contrast between the lit side of the cloud and the unlit side.

Figure 11 (d) was created by using the same input settings as the bunny cloud, but with different

geometry. The geometry was created by taking a blobby-surface, defined by a particle system,

and converting that surface into a polygonal piece of geometry.

Figure 10 Clouds rendered with different lighting colors

www.manaraa.com

29

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11 Clouds rendered with different features

Rendering of the clouds showing off some of the cloud features including the glory (a), the silver

lining (b) and the strong contrast between lit and unlit sides of the cloud (c). Also included is a

rendering with the same input settings for different geometry (d), and clouds with different

input (e), (f).

www.manaraa.com

30

Chapter 5: Analysis / Discussion

The main contribution of this work is an algorithm for simulating light scattering through a

volume of water vapor droplets. While there is room for improvement in the implementation, the

ideas of simulating light scattering events using a combination of the Mie function with isotropic

scattering are unique and reproduce realistic cloud phenomena. The primary weakness of the

algorithm is the final ray marching pass that accumulates results from the point cloud to produce

the final image. Tuning the algorithm proved to be very difficult due to how this final pass was

implemented. Other problems encountered in this phase include dealing with holes in the

geometry (notice the artifacts in the bunny geometry), concave and overlapping surfaces

(noticeable in the bunny and teapot clouds in Figure 10), and transparency. One of the major

features of clouds is fuzzy edges, which feature was not fully integrated into this work due to

time constraints and difficulty working with the final pass.

As is common for volume rendering algorithms (Apodaca 2000) our method can be very

sensitive to the input parameters. A small change in the input can greatly affect the results. The

variables that have the greatest effect on the output are the extinction coefficient , the input

light values, the scalars for the Mie scattering contribution, the isotropic scattering contribution

and the actual size of the geometry (distance between points and number of points). While it is

possible to tune some of the variables independently, like the scalars for the Mie and isotropic

scattering contributions (see Figure 12), other variables – the input light values, the extinction

coefficient, and number of points in the point cloud – are interdependent and must be tuned

simultaneously. Simultaneously tuning interdependent variables requires a long period of trial

and error to obtain the desired results. While some parameter tweaking is expected with

volumetric rendering, the process is complicated by the problem that one of the parameters (the

www.manaraa.com

31

density of the point cloud) which controls render times also significantly affects the final image.

Therefore the algorithm can only be fully tuned with the quality set high (and the render times

longer). In practice we experienced render times of 2-10 minutes per frame. For a full quality

final render this is acceptable, but for tuning this becomes very tedious.

Ambient Contribution

Isotropic Contribution

Mie Contribution

Figure 12 The different contributions to the bunny cloud rendered separately

One consolation in the tuning process is that geometries of roughly the same size can be tuned

the same way to produce roughly the same results. As an example, the input parameter settings

for the bunny cloud image were used as a starting point for the teapot cloud and even the blobby

surface cloud. There were some changes to the input parameters, but the changes were small

compared to tuning the algorithm from scratch.

Although tuning variables can be time consuming the advantage is that more variables give the

technical artist more control and flexibility. Having the ability to control light contributions from

Mie scattering, isotropic scattering, ambient light, cloud density, and incoming light color and

intensity means that the algorithm can be adapted for many different types of effects, as can be

seen in the results above.

While it does have its drawbacks, our implementation of the final rendering pass does have its

benefits, the greatest of which is that it is fully integrated into production 3d software. If needed

www.manaraa.com

32

our method could be adapted into a Maya/Renderman production pipeline with minimal

modifications. This also gives the benefit of being able to easily work with all types of geometry

and lights. While we were implementing this method we were able to focus on the algorithm

itself instead of having to deal with implementing point clouds or hand-generating geometry.

Another benefit is that any type of geometry that can be used with Maya can be adapted to work

with this method by converting it to an acceptable form. For this project we worked mainly with

polygons, but we were easily able to use a particle system to generate new geometry when

needed.

Another difficulty encountered with this algorithm is that in nature clouds have a very high

dynamic range. The final pass of the algorithm proved so difficult to implement and tune because

it needed to compress a large range of light values into a range of 0 to 1 expected by the

renderer.

Future Work

The area of this algorithm that has the most potential for improvement is the final pass of the

algorithm that generates the final image. For what it does it could be made much more efficient

and much less temperamental to changes in input parameters. Another cloud feature that would

really benefit this algorithm is the addition of fuzzy, semitransparent edges. Fuzzy edges can be a

major feature of clouds, so adding them into this method would go a long way towards

increasing realism.

One avenue of future research is to find a way to speed up the middle part of the algorithm where

the scattering is calculated. The time requirement to calculate the scattering for a single cloud is

one of the major drawbacks to this method being adopted for industrial use. It might also be

interesting to see if some of the ideas from this method could be adapted to a much faster

www.manaraa.com

33

billboard based rendering algorithm. Another possible area of research would be to integrate this

algorithm with a sky rendering algorithm.

www.manaraa.com

34

References

Apodaca, Anthony A, and Larry Gritz. Advanced Renderman: Creating CGI for Motion

Pictures. San Diego, CA, California: Academic Press, 2000.

Bouthors, Antoine, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. "Interactive

Multiple Anisotropic Scattering in Clouds." Proceedings of the 2008 Symposium on

Interactive 3D Graphics and Games. New York, NY: ACM, 2008. 173-182.

Dobashi, Yoshinori, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita, and Tomoyuki

Nishita. "A Simple, Efficient Method for Realistic Animation of Clouds." Proceedings of

the 27th Annual Conference on Computer Graphics and Interactive Techniques. New

York, NY: ACM Press/Addison-Wesley Publishing Co., 2000. 19-28.

Elinas, Pantelis, and Wolfgang Sturzlinger. "Real-Time Rendering of 3D Clouds." Journal of

Graphics Tools (A. K. Peters, Ltd.) 5, no. 4 (October 2000). 33-45.

Haber, Jorg, Marcus Magnor, and Hans-Peter Seidel. "Physically-Based Simulation of Twilight

Phenomena." ACM Transactions of Graphics (ACM) 24, no. 4 (October 2005). 1353-

1373.

Harris, Mark J. "Real-Time Cloud Simulation and Rendering." Doctoral Dissertation. The

University of North Carolina at Chapel Hill, 2003.

Harris, Mark J., and Anselmo Lastra. "Real-Time Cloud Rendering." Computer Graphics

Forum. Blackwell Publishing, 2001. 76-84.

Henry, Jed. ―Kites.‖ Animated film produced by Brigham Young University Center for

Animation. 2009.

Liao, Horng-Shyang, Jung-Hong Chuang, and Cheng-Chung Lin. "Efficient Rendering of

Dynamic Clouds." Proceedings of the 2004 ACM SIGGRAPH International Conference

on Virtual Reality Continuum and its Applications in Industry. New York, NY: ACM,

2004. 19-25.

Max, Nelson, Greg Schussmanq, Ryo Miyazaki, Kei Iwasaki, and Tomuyuki Nishita. "Diffusion

and Multiple Anisotropic Scattering for Global Illumination in Clouds." Journal of the

Winter School of Computer Graphics (UNION Agency – Science Press), 2004. 2-6.

McGuire, Morgan, and Andi Fein. "Real-Time Rendering of Cartoon Smoke and Clouds."

Proceedings of the 4th International Symposium on Non-Photorealistic Animation and

Rendering. New York, NY: ACM, 2006. 21-26.

Muller, Matthias, David Charypar, and Markus Gross. "Particle-Based Fluid Simulation for

Interactive Applications." Proceedings of the 2003 ACM SIGGRAPH/Eurographics

www.manaraa.com

35

Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics

Association, 2003. 154-159.

Perlin, Ken, and Eric M. Hoffert. "Hypertexture." Proceedings of the 16th Annual Conference on

Computer Graphics and Interactive Techniques. New York, NY: ACM, 1989. 253-262.

Roden, Timothy, and Ian Parberry. "Clouds and Stars: Efficient Real-Time Procedural Sky

Rendering Using 3D Hardware." Proceedings of the 2005 ACM SIGCHI International

Conference on Advances in Computer Entertainment. New York, NY: ACM, 2005. 434-

437.

Schpok, Joshua, Joseph Simons, David S. Ebert, and Charles Hansen. "A Real-Time Cloud

Modeling, Rendering, and Animation System." Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville,

Switzerland: Eurographics Association, 2003. 160-166.

Trembilski, Andrzej, and Andreas Brossler. "Surface-Based Efficient Cloud Visualisation for

Animation Applications." Proceedings of the 10th International Conference in Central

Europe on Computer Graphics. Darmstadt, Germany: Visualization and Computer

Vision, 2002. 453-460.

Wang, Niniane; Microsoft Corporation;. "Realistic and Fast Cloud Rendering." Journal of

Graphics, GPU, & Game Tools. (A. K. Peters, Ltd.) 9, no. 3 (2004). 21-40.

www.manaraa.com

36

Appendix: Implementation Details

The implementation details for this project can be divided into three sections: tools, code, and

rendering.

Tools

The results were generated on a quad-core Intel processor running the 64-bit version of Windows

7 Enterprise. This project’s main algorithm was coded in C. The clouds were modeled and

rendered using Autodesk Maya 2008 (64-bit) with the RenderMan for Maya plugin version 3.0.2

(64-bit). Videos were created using Adobe After Effects CS4.

Code

The code for this project was set up as a C++ application in Visual Studio. The project was set to

compile with multi-threading enabled. In order to read and write to the point cloud files,

additional Pixar RenderMan libraries were referenced by the linker:

 Program Files\Pixar\RenderManProServer-15.0\lib

 Program Files\Pixar\RenderManStudio-2.0.2-maya2010\rmantree\lib

 Program Files\Pixar\RenderManStudio-2.0.2-maya2010\lib

The actual library needed for the point clouds is called libprman.lib, which was listed as an

additional dependency. Since we used the 64-bit version of the RenderMan software the Visual

Studio project must be set to compile to a 64 bit platform.

After the project has been set up writing the code is straightforward. All that was needed to

access the point cloud library functions was to include the file ―pointcloud.h‖, which is located in

the above referenced locations. Refer to the RenderMan documentation for information about the

point cloud functions.

www.manaraa.com

37

The input for the executable was set to be two strings, one the location of the input point cloud,

and the other the location of the output point cloud. Later on in the development we added the

ability to output additional intermediate point cloud files.

Depending on how the Pixar library is referenced, it may be necessary to include a copy of

libprman.lib in the same directory as the cloud project executable.

Rendering

Figure 13 Algorithm Setup

The rendering portion of this project was implemented as a set of passes in Maya with two

RenderMan shaders. The files were set up in the following folder structure:

www.manaraa.com

38

 [project root]

o data – contains the output point clouds and brickmaps

o renderman

 [scene name]

 data – contains the point cloud and brickmap files generated by the

Maya/RenderMan passes, generated automatically

 images – contains the output images from the final pass, generated

automatically

 rib – contains the scene rib files created by Maya/Renderman,

generated automatically

 shaders – contains compiled scene shaders, generated

automatically

 …

o rmantex – contains the pre-generated texture that represents the Mie function

generated from the data produced by (Bouthors 2008), must be copied to this

folder before rendering

o scenes – contains the saved Maya scene file

With the ―RenderMan for Maya‖ plugin installed Maya will automatically generate the above

file structure. It remains only to copy the texture files into the correct location, and occasionally

to copy the intermediate output files from the C++ executable.

Both RenderMan shaders were written using a simple text editor, and then compiled into

RenderMan ―.slo‖ shaders using the ―shader.exe‖ tool that comes with the Pixar software. We

imported these into Maya by creating two new RenderMan shader nodes, and pointing them to

www.manaraa.com

39

the two ―.slo‖ files. When the RenderMan shader nodes are created Maya automatically created

―Shading Group‖ nodes, which will be modified later in the setup.

The next step in the setup process was to create a new series of RenderMan passes. The passes

were modified to perform the three steps of our algorithm – create the point cloud, simulate light

scattering, and render the final image. This version of RenderMan for Maya comes with a

collection of predefined passes. For our project we created a new ―SSMakeBrickmap‖ pass. By

default this pass is used for rendering general sub-surface scattering effects, but we were able to

adapt it to our purposes. The SSMakeBrickmap pass is composed of three parts, and each part

can be configured separately. The first sub-pass is used to create a point cloud from the scene

data and by default was named ―rmanSSRenderPass‖. The screenshot in Figure 14 shows the

modifications we made to the pass. In this screen the ―sunShape‖ is a link to the main light

representing the sun, and ―readPointCloudSG‖ is a link to the shading group for the final pass

shader, which causes only the geometry being shaded by the cloud shaders to be used when

generating the point cloud. The field ―input_cloud‖ is used to name the initial point cloud, which

is generated by this pass and stored in the renderman/[scene name]/data directory. The ―Caching

Behavior‖ can be used to control when the pass will be run. If it is set to ―Compute‖ then the

pass is always computed. If set to ―Reuse‖ then the pass will not run, and the previously

computed data will be used. The ―Caching Behavior‖ applies to all of the passes.

www.manaraa.com

40

Figure 14 rmanSSRenderPass settings

The next subpass was named by default ―rmanSSDifusePass‖. Normally it is used to compute

sub-surface scattering on the previously generated point cloud. For our project we adapted it to

call the light-scattering executable, as can be seen in Figure 15. The ―Command‖ field was set to

be:

―…\cloud.exe‖ [passinfo rmanSSRenderPass filename] [passinfo this filename]

The command has the full path to the cloud.exe executable (not shown here). The ―passinfo‖

commands return the filenames for the ―rmanSSRenderPass‖ and the current pass – which

become the input and output point cloud filenames for the light-scattering executable. Since we

changed the default command for this pass we were able to safely ignore the other pass settings

that no longer applied.

www.manaraa.com

41

Figure 15 rmanSSDiffusePass settings

The final sub-pass was named ―rmanSSMakeBrickmapPass‖, and accordingly is used to create

the final brickmap file using the output from the light-scattering executable. For this pass the

default settings were adequate, as can be seen in Figure 16.

Figure 16 rmanSSMakeBrickmapPass settings

In order for the RenderMan renderer to properly create the initial point cloud file, it must have a

reference to the data variables. This was accomplished by adding a ―Ri Injection Point‖. Under

―Default RiOptions MEL‖ we added the following lines, separated by semicolons:

www.manaraa.com

42

 RiDisplayChannel ―vector _L‖

 RiDisplayChannel ―color _i‖

 RiDisplayChannel ―color _o‖

 RiDisplayChannel ―float _d‖

 RiDisplayChannel ―float _r‖

The final step in configuring Maya/RenderMan was to configure the shading groups for the

custom shaders created earlier. We named the two shaders and the corresponding shading groups

according to their functionality: ―createPointCloud‖ and ―readPointCloud‖, the former running

during the first pass of the algorithm and the latter running during the last pass. No changes were

needed for the ―createPointCloud‖ shading group, but to the second we added an ―Adaptor

Controller‖, as can be seen in Figure 17. We set the adaptor to use the ―createPointCloud‖

shading group whenever the ―pass_id‖ matched ―rmanSSRenderPass‖. This adapter causes the

renderer to use the ―createPointCloud‖ shader when rendering the first pass that creates the point

cloud, and use the ―readPointCloud‖ shader on the final pass.

With these settings it is trivial to add new geometry to the scene – simply attach the

―readPointCloud‖ shading group to the geometry. When the scene is rendered the first pass will

use the ―createPointCloud‖ shader with the light representing the sun as the camera to generate a

point cloud of the geometry. Next the light scattering executable will be run on the new point

cloud. Finally, the output from the light scattering executable is converted into a brickmap and

passed to the readPointCloud shader to create the final image.

www.manaraa.com

43

Figure 17 readPointCloudSG settings

The following tables list the inputs and outputs to the two shaders and the C++ executable.

Table 2 C++ Executable Input and Output

Input String representing the path and filename

to the input point cloud

String representing the path and filename

to the output point cloud

Output The output point cloud

Optional: point cloud files representing the

different passes computed in the algorithm

www.manaraa.com

44

Table 3 Shader createPointCloud Input and Output

Input String ―filename‖ representing the path and

filename for the initial point cloud

For our project set to:

―[passinfo rmanSSRenderPass filename]‖

String ―displaychannels‖ representing the

names of the variables to be stored in the

initial point cloud

For our project set to:

―_L,_i,_o,_d,_r‖

Float ―scale‖ that adjusts the overall scale

of the coordinate system

Float ―stepsize‖ used to control the step

size of the ray marching algorithm

Float ―sigma_e‖ represents the variable

Output Initial point cloud

www.manaraa.com

45

Table 4 Shader readPointCloud Input and Output

Input String ―input_filename‖ which stores the

path and filename of the input point cloud

String ―output_filename‖ which stores the

path and filename of the output brickmap

String ―cloudDataPath‖ which stores the

path to the Mie texture files

Float ―sigma_e‖ represents the variable

Float ―stepsize‖ used to control the step

size of the ray marching algorithm

Float ―scale‖ that adjusts the overall scale

of the coordinate system

Float ―mie_scale‖ that adjusts the Mie

scattering contribution in the final image

Float ―iso_scale‖ that adjusts the isotropic

contribution to the final image

Color ―sky‖ that represents the ambient

light contribution to the final image

Output Final image

	Brigham Young University
	BYU ScholarsArchive
	2011-06-24

	Rendering Realistic Cloud Effects for Computer Generated Films
	Cory A. Reimschussel
	BYU ScholarsArchive Citation

	Rendering Realistic Cloud Effects for Computer Generated Production Films
	ABSTRACT
	Table of Contents
	List of Tables
	List of Figures

	Chapter 1: Introduction
	Contribution

	Chapter 2: Related Work
	Modeling
	Animation
	Rendering

	Chapter 3: Methods
	Features
	Data Structures
	Point Cloud
	Scattering Function
	Brickmap

	Rendering Algorithm
	Generating the point cloud
	Simulating light scattering
	Main Function
	Worker Function

	Final Rendering

	Chapter 4: Results
	Chapter 5: Analysis / Discussion
	Future Work

	References
	Appendix: Implementation Details
	Tools
	Code
	Rendering

